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A particle code was written using weighted parzicies and a quiet start technique o
simulate the nonlinear propagation of whistler waves paralle: to an external magnetic
field. The algorithm is derived from the Darwin Lagrangian by a variational method and
two versions of the code are considered, using linear and quadratic splines. Mumericat
effects due to the discrete initial loading of the particles in paralle! veiocities, perpen-
dicular velocity phase angles and positions are analyzed; and the performance of the
linear and quadratic versions of the code are compared.

1. INTRODUCTION

This paper presents a particle simulation code primarity designed to simulate the
nonlinear propagation of whistler waves parallel to an external magnetic field B,
in an electron plasma with a stationary positive neutralizing background. This
code has recently been applied to numerical studies related to the theory of {rig-
gered Very-Low-Frequency (VLF) radio emissions from the Magnetosphere {11,
and is applicable to loss-cone diffusion effects in controlled thermonuclear fusion
devices. In particular it has been used to simulate the “antenna effect” in the propa-
gation of whistler wavepackets and to investigate a plasma instability due to phase
correlation of the electron perpendicular velocities [2]. These applications wil: be
published elsewhere and the present paper is devoted to a description of the
algorithm and a study of numerical effects due to the discrete nature of the particic
and field representations.

The whistler mode corresponds to plasma waves propagating in the direction of
an externally applied magnetic field B, with circularly polarized wave fields. In the
problems considered in this paper propagation parallel to B, will be assumed. The
wave vector potential A in this case is perpendicular to B, and at any given time the
tips of the local A vectors form a helix as shown in Fig. 1a. The dispersion relaticn
for the whistler mode is

wy? ¢ w — kv, 1 kP 2 . P
L+ o [ S By Py Sp———E |F@e,vyav=0. )
449

Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.



450 J. DENAVIT

(a)

ke VR (o]
Wp

(b) (c)

Fic. 1. (a) Geometric definition of a whistler wave showing the external magnetic field B, ,
the wave vector poteniial A and a typical electron perpendicular velocity v, . (b) Dispersion curve.
(c) Parallel velocity distribution function showing the phase velocity w/k and the resonant velocity

[7: 3

Here v, and v, are the electron velocities respectively parallel and perpendicular to
B, , w is the frequency, k is the wavenumber, w, == eB,/mc is the electron cyclotron
frequency, w, = (dme?n,/m)'/? is the plasma frequency, #, is the electron density,
—e and m are the electron charge and mass and ¢ is the speed of light [3]. This
dispersion relation shows that the whistler frequency w is smaller than the cyclotron
frequency, Fig. 1b, and that a resonance exists for electrons having a parallel
velocity near vp = (0 — w,)fk, Fig. Ic. Resonant electrons travel in opposite
direction from the wave and as they gyrate with angular velocity o, , their perpen-
dicular velocity remains in phase with the local wave vector potential, causing them
to interact strongly with the wave. This results in the cyclotron damping or amplifi-
cation of the wave. In the case of a large-amplitude wave, resonant electrons can
become trapped in the sense that the phase angle { of their perpendicular velocity
relative to the local vector potential oscillates at the trapping frequency
wr = k(edv, [mc)*/? [4].

Note that the integral in Eq. (1) can be integrated with respect to v, to give a
dispersion relation which depends only on the moments 7,(v,) = [v, fdv, and
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novg) = [ v,3fdv, of fwith respect to v, . Thus the linear behavior of the plasma is
not altered by assuming an electron distribution which is monoenergetic in the
perpendicuiar direction for each value of the parailel velocity, i.e.,

f(vx s v.l_) =ﬁ)(vzu) 8[0; - E”.‘_G(U-’ﬂ‘}]s

provided that the moments 7,(v,) and 7.{(v,) are unchanged. Proper choice of the
two [unctions fy(x,) and v,(¢,) can reproduce both moments %{u,) and %.{z.)
independently, including for example the moments of a loss-cone distribution for
which the ratio 7,(v,)/n(v,) = t3(v,) is a function of ¢, . This simplification
allows the study of a number of problems with particles distributed around a
single circle in the v, , v, plane for each value of », , and limits the need for a fuli
distribution of particles to the study of effects due to energy spread in the perpen-
dicular direction.

The present code is one-dimensional with spatial variation along the external
magnetic field only (x direction) and periodic boundary conditions with periodicity
length L. Only the motions of electrons are considered and the ions are replaced
by a uniform positive charge distribution. The phase space is four-dimensional
with position x and three velocities v, , v, and v, . In order to study low-amplitude
phenomena, a quiet start method is used with a regular initial loading of the
simulation particles in phase space. For this purpose, the x, v, plane is covered
with a grid with mesh sizes 4x and Av,, Fig. 2a, and a set of weighted simuiation
particles is loaded at each grid point (x, v,). Each set consists of particles with
perpendicular velocities distributed at regular angular intervals 46 around con-
centric circles in the v, , v, plane as shown in Fig. 2b. The charge over mass ratic is
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Fic. 2. Grid structure defining the discrete loading of particles in phase spaca.
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—e/m for all simulation particles, but the mass (and charge) of the simulation
particles are chosen proportional to the local value of the initial distribution
function in phase space. This regular loading of weighted particles avoids the
undesirable initial fluctuations present in the more conventional random loading
techniques, but it is responsible for numerical effects which excite nonphysical
perturbations. The simulation of low-amplitude phenomena over a reasonable
time therefore requires an understanding of these anomalous excitations and the
selection of the proper algorithm and numerical parameters to minimize their
effect.

The algorithm used to compute the self fields and to advance the particles is
described in Section 2. Two versions of the algorithm are considered using linear
and quadratic spline interpolations of the potentials. The numerical effects due to
discrete loading of the particles are considered in the next three Sections. The first
effect, to be considered in Section 3, is the whistler-mode beaming instability
resulting from the interaction of discrete sets of beams with a finite velocity
separation dv, . The second effect is due to the discrete distribution in the angular
phase @ of the perpendicular velocities of the particles, which causes an excitation
of electrostatic modes. This effect is discussed in Section 4. A third type of non-
physical perturbations results from the finite grid spacing Ax. The discrete
representation of potentials yields whistler-mode aliases [5]. In addition, the regular
loading of particles at grid points causes an excitation of oscillations with frequen-
cies wy + 2madv,/dx where w, is the main wave frequency and o is an integer. This
effect is considered in Section V. The three types of numerical effects have been
observed in numerical simulations and the results of a comparative study of these
effects, using the linear and quadratic versions of the code, are included.

2. ALGORITHM

A. Finite-Difference Equations

Since whistler waves propagate at low frequency, in the range 200-30,000 Hz for
magnetosphere whistlers for example, it is possible to neglect radiation in the self-
field computations and the algorithm is derived from the Darwin Lagrangian [6, 7],

oo [ BB o o e
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Here @(x) and A{(x) are the scalar and vector potentials, p, is the uniform ion charge
density, B = V X A is the magnetic field, ¢;, m,, x; and v, denote the chargs,
mass, position and velocity of the N simulation particles. Note that in the frst
term only the Coulomb field E, = —V@ is included in the electric field energy.
This is a distinctive feature of the Darwin Lagrangian, which results in the absence
of retardation terms in the resuifing field equations. The resulting modef retzins
induced electric and magnetic fields, as well as the Coulomb field, but no radiation.

The finite-difference equations for the fields are obtained by the variationsal
method of H. R. Lewis [8] by expanding the internal {or wave} potentials in the
form

3
o
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Fic. 3. Linear and quadratic splines.

where the basis function ¢(x) also known as the spline determines the inter-
polation used to define values of @ and A for arbitrary values of x. Both linear and
quadratic splines, defined in Fig. 3, are considered. Substituting these expansions
into the Lagrangian and observing that the vector potential is perpendicular o the
direction of propagation yields
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where the dot denotes time differentiation,
@ = o(x — jdx) and @; = do(x — jdx)/dx.

The equations for the particle dynamics are obtained by writing the Euler—
Lagrange equations corresponding to the generalized coordinates x;, y;, z; with
i = 1,..., N and adding the Lorentz force due to the external field B which is not
included in the Lagrangian [9]. These operations yield

dvmi . q; d 1 1 . ’ 7
a m, Z:l (“%‘ + - UyiBys + z inlgza') @' (x; — jdx), (6)
and
d G < g
G|+ L5 gt — 9 = L B )

where the bracket in the left member of Eq. (7) is recognized as the perpendicular
canonical momentum of particle 7/ in the internal potential A. Particular forms
taken by these equations in the case of linear and quadratic splines are given in
Appendix A.

The field equations are obtained by writing the Euler-Lagrange equations for
the generalized coordinates «; , 8;, and B;, with j = 1,..., J,

J L L N
Yooy [0 Qi@ dx = 477p0L @; dx + 4w Y qup(x; — jdx) ®)
=1 i=1
and
J Lo dr ¥ . v
2. By Jo Prrpi dx = _077_ Y qi¥iap(x — jdx). ®
j'=1 i=1

The first of these equations is recognized as Poisson’s equation and the second as
Ampere’s law written in terms of the vector potential. The integral [ o). @, dx is
the appropriate form of the second derivative operator corresponding to the spline
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o(x) and the spline also defines the charge sharing scheme to compute the charge
and current densities in the right members of Eqgs. (8) and (9). The particular Torms
taken by the derivative operator and charge sharing scheme for linear and quadratic
splines are given in Appendix A.

B. Time Step

The particles and fields are advanced in time following a method based on
perpendicular canonical momenta which has been used in previous codes using the
Darwin model {10]. The particle positions x; and perpendicular velocities v, , as
well as the potentials «; and B, , are computed at times n4¢ and the parallel velocities
v,; are computed at half time steps (n — 1/2) 4r as shown in Fig. 4. It will be
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FiG. 4. Time step.

convenient to denote vectors perpendicular to the direction of propagation in
compiex number form with their y component represented by the real part and their
z component represented by the imaginary part. With this notaion Eq. {7} takes the
form

d q; . /
ar (UJ_i + F,ZZ_EAJ_’J:) = 1w _; 10)
where
J "
A_Li = Z B,-(p(xz- _fdx) 1133}
=1
and we observe that the ratio ¢;/m; = —e/m is the same for all simulation particles.

To second order in 4¢, Eq. (10) yields
(I =) v + (gifmye) A%, = (1 -+ 13) 077 - {gilmye) AZ'_?* (11
where 8, = w,d#/2 and the superscripts denote time values. Let

b = (1 — i8,) v + (gifmic) AL,
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denote a modified form of the perpendicular canonical momentum of particle i at
time ndt, then Eq. (11) yields

n._ 9 2i86 —_ 80 n~1
hit = me 1+ i, AL+ 150 1 + 8 hs (12)
and
K n-1 _ q: n
o= + 5 (/1 s AM) . (122)

Let us assume that the computation has proceeded to the point where all quanti-
ties are known up to and including time (r — 1) 4¢. A leap frog step applied to
Eq. (6) yields v/ and x,*. The charge density may then be computed at time nA4¢
and Eq. (8) yields the scalar potentials «;” as in electrostatic computations [11].
Since the computation of either 4, or v%, from Egs. (12) or (12a) requires knowl-
edge of A%, , the vector potentials ;" at the new time n4d? must be computed first.
This is achieved by substituting Eq. (12a) into Eq. (9) to eliminate o7, and
rearranging terms to obtain an equation for B, in terms of known quantities,

o - L ’ ’ 477(17, . )
5 ([ gty ax 200 LS gt — i) ol — 43| By
=1
4
= g.hy Telx” — jAx). 13
R ;1 7 ) (13)

In the case of the linear spline, the operator ﬂ; @;. @, dx takes the standard form

L 2/dx  for j —j =0,
f @' — jAX) ¢'(x — jMy dx = | —1/dx  for |j'—jl=1, (14
0 0 for |j'—j|>1,

and the second term in bracket in the left member of Eq. (13) is nonzero only for
[j*—j ! =<1. In this case the left member of Eq. (13) therefore reduces to three
terms.

AiBiq + Bif; + CiBiss = D; (13a)

where the quantities 4;, B;, C;and D;, which depend on known charge and
momentum distributions, are defined in Appendix A. Writing Eq. (13a) with
Jj = 1,..., J and applying periodic boundary conditions yields a system of equations
having a tridiagonal coefficient matrix with nonzero off-diagonal corner elements,

31/81 + C1/82 + AIBJ = D1 »
A2Bl + Bzﬁz + Czﬁs = Dz »
Asﬁz + Bsﬁs -+ C3ﬁ:4 = Ds s

C.Iﬁl + AJIBJ—1 + BJ/Q.I =D;,.
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In the case of the quadratic spline a similar system of equation, having a coefficient
matrix with five nonzero diagonals and three nonzero elements in each corner is
obtained. A direct elimination procedure to solve such systems, developed by
Gibbons [121is used in the present code.

C. Energy conservation.

As a consequence of the Lagrangian formulation, the present algorithm for
advancing particles conserves energy independently of the grid spacing dx. Tne
expression for the total energy is provided by the Hamiltonian

I »L
Ut = 5— 3. ooy ’ P dx
O =1 -0
} J } LY
-+ —8;_ Z (ﬁyiﬁw' =+ Bziﬁz;") ( (Pv Pj Tdx 4+ 3 Z i (L ; T '_L¢ 15
=1 “ i

The first term in the right member of Eq. (15) is the electrostatic energy, Uy , the
second term is the magnetic energy U,, and the third term 15 th@ kinetic energy Ug of
the system. This energy conservation applies only tc the discrete spatial representa-
iion and is therefore exact only in the limit 47 — .

D. Implementation

The finite difference equations for linear and gquadratic splines are derived in
Appendix A. Thes.e equations are written in normalized form with time measured
in units of w*, position in units of the system’s length L and the potentials in units
of {m/e} 12w, 2. It should be noted that since the algorithm accounts for both the
self Coulomb fields and the self-induced fields (neglecting retardation effects), two
characteristic lengths, the Debye length A, = ¢n/w, and the coliisioniess skin
depth A, = ¢/w, , need to be considered. The ratio of these lengths, A/, = vy /s,
which must be sufficiently small to justify the absence of retardation effects, is
therefore a significant dimensionless parameter of any computation. Slmﬂariy 1lwo
characteristic frequencies w, and w, need to be considered and their ratio w,/w, is
another dimensionless parameter.

Electron energies near 10 KeV correspond to a ratio vy/c ~ 0.11. This would
be a realistic value for energetic electrons in the magnetosphere or for controlied
fusion experiments. Values of the ratio w,/w, in the magnetosphere, in the equa-
torial region at three Earth radii, are near 0.25. In a number of simulaticns carried
out with this code, the values vy/c = 0.33 and w//w, = 0.5 were chosen io
economize computing time, but it is felt that the gualitative results of such com-
putations retain their validity even though these values are 2 to 3 times larger than
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realistic values. Computer simulations can rarely duplicate a physical phenomenon
with realistic parameters. However it is possible to simulate different aspects of a
problem with such parameters that enable the effects we seek to be observed within
a reasonable length of computation.

Two versions of the code, using linear and quadratic splines have been written
for use on the CDC 7600. These codes use disk storage for particle data (5 words
per particle) and runs with up to 5 - 10° particles have been made for the simulation
of wavepacket propagation. The computing times are approximately 18 usec per
particle-time step for the linear spline and 26 usec per particle-time step for the
quadratic spline.

3. ErFEcT OF DISCRETE LOADING OF PARALLEL VELOCITIES

The first effect considered is the whistler-mode equivalent of the beaming
instability encountered in electrostatic problems [11, 13]. It is due to the discrete
loading of particles with parallel velocities separated by a finite interval dv, . This
causes the distribution function to take the form of a sum of 6 functions,

K
f (Um > U_L) = 5(UJ_ - U_LO) Z f(‘)(vm) 8(7'7@ — O'Ai)m)

o=—K

and the dispersion relation, Eq. (1), becomes

ke 2| wdv, & filodv) | viedv, foleduv,) _
1+(wp)+ k Zz—‘aAv,c 2 Z (z——oAv)ZHO (16)

where z = (w — w,)/k. Here the electron distribution has been assumed to be
monoenergetic in the perpendicular direction. Each beam gives two roots of the
dispersion relation, which are either real or complex conjugates. The complex
conjugate roots yield an unstable behavior of the corresponding beam. Since the
number of beams is finite it is possible to determine these roots by solving Eq. (16)
numerically and the linear behavior of any individual beam may be computed
exactly. The result of such a computation is given later in this Section. However, the
maximum growth rate may be found analytically by following the method of
Dawson [13]. Identities are used to replace the sums over ¢ in Eq. (16) by integrals
over v, , as in the original dispersion relation, plus singular terms which account
for the poles at z, = odv, . This analysis yields results similar to those of electro-
static case [11]. For 4v,, — 0 and a Maxwellian distribution function

Jo = exp[—3(v/ven)*]/((27)'72 vin)
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the complex frequencies w, = a, 1 i, are given by

o kdo, & Im Z(§,) \ T
%, = w, + okde, + e tan ( T = Fictw,f + Re Z(5,) ! T
2 20%%, .

By =

L ' i (—277)1"2 rndr,

ue

a

I kc? 2y @D 2.0, R
L -1 4+ Z200 | Re Z(L,))

w2 - 2%, V2kvy, 202,
2 2
W, | ULOCO NS % r O
— Im Z 4 18
+ ([\/2 kv, i 22, ] n (QO),) ]§ S

where {, = oduv,/(V/2 vin) and Z({) is the plasma dispersion function [14]. These
results show that the natural frequencies «, correspond approximately to the
Doppler frequencies of the beams, shifted by the cyclotron frequency, while the
growth rates B, are approximately proportional to the product k4w, .

The dependence of the growth rates 8, on o has two relative maxima. The first
maximum corresponds to the most intense beam, i.e., the central beam ¢ = ¢ for
a Maxwellian distribution. The frequency and growth rate for this mode are
obtained by setting {, = 0 in Eqs. (17) and (18) which gives a frequency o,_, = w,
equal to the cyclotron frequency. The second maximum corresponds to the beam
closest to the resonant velocity vy = {(w, — w,)/k for which the frequency iies clcse
to the whistler frequency w, . This second relative maximum is significant only in
the case of a large population of resonant electrons and, except for this case, the
first relative maximum, corresponding to o = 0, may therefore be taker ss an
estimate of the maximum growth rate. For example, with ke/w, = 1/+/3,
w, = wyf2 and v ofven = V2 (e, T, = T,) Eq. (18) gives B,_o = 0.041w, for
ren = ¢f3 and B,y = 0.025w, for vn = ¢/4.5 [15}. The growth rates obtained
from numerical solutions of the dispersion relation, Eq. {16}, for the above examples

re given in Table I. For 4y = ¢/3 the relative maxima which would occur at
we = 0.5w, and wy = 0.13w,, are very broad and merge into a single wide spectrum.
Because of the large number of resonant particles in this case, the growth rate near
%oy = wo = 0.13w (8,5 = 0.047w,) is somewhat larger than the above estimate
(Boeo = 0.041w,) but the difference remains small. For oy = ¢/4.5, fewer resonant
electrons are present, and both maxima are evident. The maximum near o,_, = s,
clearly dominates and agrees with the estimated maximum.

A test was carried out to observe in some detail the cccurrence of the beaming
instability with the above parameters in the case vyp = ¢/3. The particles in this
test were loaded uniformly in x with dx = L/64 and do, == ¢/5{11 beams}. In the
perpendicular direction the distribution was moncenergetic and uniform in phase

581/15/4~3
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TABLE I
Roots of the Dispersion Relation, Eq. (16), for the Whistler Beaming Instability with kc/w,=1/1/3,
wefw, = 1/2, v, = ¢/5, T, = T. and Two Values of the Thermal Velocity, vin = ¢/3
and vn = /4.5

vin = ¢/3 v = c/4.5

G aglw, Bolwn ooy Bolwy
—5 1.077 6.23 x 1073 1.077 3.20 x 10—*
—4 0.961 1.28 x 10~ 0.962 1.85 x 1073
—3 0.842 2.16 x 1072 0.846 6.85 x 103
—2 0.721 3.06 x 102 0.726 1.60 x 102
—1 0.597 3.79 x 1072 0.599 2.44 x 102

0 0.472 423 x 1072 0.468 245 x 102

1 0.347 4.38 x 102 0.343 3.03 x 103

2 0.227 446 x 102 0.241 0

3 0.120 4.66 x 102 0.123 1.13 x 102

4 0.028 3.27 x 102 0.037 595 x 103

5 —0.079 1.36 x 10— —0.077 7.06 x 10—+

angles with 46 = 27/64. This choice of Ax and 46 reduces as much as possible
other numerical effects described in Sections IV and V, while dv, is purposely
chosen rather large to emphasize the beaming instability. An initial perturbation is
applied to the central set of beams, which gives to this set of beams a small-
amplitude circurlarly polarized perpendicular velocity,

7,%¥ cos kx + % sin kx) for o=0,
0

3 —0) =
Blx, 1= 0)_—? for o #0,

with ,% = v,,/40.

The central-beam perturbation as a function of time for this test is given in
Fig. 5. The solid line shows the resuit of a Laplace transform solution in time of
the linearized equations for 2K -+ I beams with a spatial dependence of the form
exp(ikx). This solutions is obtained from the 2(2K -+ 1) roots of Eq. (16), 22 roots
in this case, superimposing the corresponding modes with their proper initial
excitation and evaluating the time behavior of the combination. The circles give
the results of the simulation code and the broken line shows the maximum growth
rate (B, = 0.041w,) obtained analytically.

The results of this test may be interpreted as follows. The current due to the
central beam perturbation produces circularly polarized fields which drive the off-
center beams of the plasma, causing them to acquire circularly polarized velocity
perturbations and causing the perturbation of the central beam to decrease initially.
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£16. 5. Test problem showing the effect of discrete loading of particles in parallel velocity.

The perturbations of the off-center beams grow at the exponential rates 3, but are
at first phase mixed since they advance with different velocities. However, as the
recurrence time 1, = 2m/kdv, = 54w}’ is approached these perturbations come
back into phase producing strong fields which drive the central beam perturbation
to a large value as shown in Fig. 5 near ¢ = 54w}'. The raagnetic energy drops
initially from Uy = 0.7 X 10 Uotat t = 0to U,y = 0.7 x 108U at 7 = 4307%,
then reglows as ¢ approaches 7, to reach a maximum U, = 2.2 103U, at
t = 58w;". Note that the simulation results in Fig. 5 level off for 7 > 80w} At
this time the velocity perturbation in the x direction has reached a value ép, == 0.1¢
equal to half the beam separation. This causes the beams tc merge and linear
theory is no longer expected to hold.

iV. EFFeEcT OF DISCRETE LOADING OF PERPENDICULAR VELOCITY PHASES

The effect of initializing the particles with perpendicular velocities having discrete
phase angles, separated by a finite interval 46 is considered in this section. This
effect has no equivalent in purely electrostatic simulations. The electron distribution
is again assumed to be monoenergetic in the perpendicular directicn, with per-
pendicular velocities uniformly distributed at A4 values 6, = 2au/M of the phese
angle, with o = 1,..., M, and may be considered as A separate beams. Fach heam

pH(x) = p® sinlkx — 2mp/df),
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where k is the whistler wavenumber. In this case the perturbations would cancel
each other and the total charge density would be uniform. In the simulation code,
however, the charge density is computed only at discrete grid point in the x direction
and this results in an incomplete cancellation of the charge densities which resuits
in the excitation of electrostatic modes.

This effect may be understood in terms of the simple example illustrated in
Fig. 6, involving two beams pu = 1 and x = 2 and four particles in each beam,

x=0 ;_i_,i x=L
pet b
j=1 2 3 4

j=l 2 3 4

— Ax—

® Particles

Fic. 6. Example illustrating the effect of discrete loading of particles in perpendicular velocity
phase angles.

each with a charge —en,L/8 initially located at four grid points j = 1, 2, 3, 4. After
some time has elapsed the particles of the first beam, u = 1, have acquired
sinusoidal displacements in the x direction due to the v, X B, force. Particles at
Jj =2 and 4 undergo the maximum displacement ¢ and particles at j =1 and 3
have zero displacements. The charge sharing scheme, using the linear spline, then
yields charge densities at the grid points given by the vector

pit = (—eny/2{1, 1 — €, 1 + 2¢,1 — &}

where € = £/Ax. The particles of the second beam, u = 2, acquire displacements
which are 180° out of phase from those of the first beam and the charge densities
for this beam are given by

Pt = (—eny/2){1 + 26,1 — ¢, 1,1 — ).

J

The total charge density at each grid point, obtained by taking the sum of these
vectors is then

p,=—enf{l +-¢, 1 —e 1 4¢ 1-—¢,

in which a second harmonic with amplitude g, = —eny&y/4x is superimposed over
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the uniform charge. Since only the uniform charge is neutralized by the ion back-
ground, second harmonic electrostatic modes are excited in the plasma.
In the general case the position of a particle is given by

xiow = jAx + odv,t + &or )

where the displacement £9* due to the interaction with the whistler wave is of the
form

gow = € sin[2m((u/ M) — (D] {i9a;

Here the superscripts j, ¢ and p define respectively the initial position, parallel
velocity and phase angle of the particle and J is the number of grid points per
whistler wavelength. This expression is introduced into the charge deusity term of
Eq. (8) to give

1 X .
Py =4 > qiplx; — j Ax),

=1
02,
=7 Lol — (=) 4]

Here ny; denotes the resonant particle density and oy =~ vy/dv, . Since resonant
particles undergo large displacements they are the major contributors to the
present effect and nonresonant particles have been neglected in Eq. (20}, Sub-
stituting Eq. (192) into Eq. (20) and taking a discrete Fourier transform with raspect
to j' yields, as shown in Appendix B,

!

o
Q—en RO JP g e(zy) e i aivgt/L for n= M + g4/,
- o
Pr = r=rgt+at /M ZE)
0 for 5 3£ rgM + goJ.
Q¢ [}

Herep, q, g, , ¥, ro must be integers, z, = 2n(n — pJ) £z/L where &5 is the maximum
displacement of resonant electrons, J, denotes the Bessel funciion of the first kind
of integer order and ¢,, is the Fourier transform of the base function defined in
Appendix B.

Nonzero harmonics occur with order n = reM + g/ where r, and ¢, are
arbitrary integers. For example, with J = 16 and A = 12, electrostatic modes
correspeonding to the 4-th and 8-th harmonic are driven. With J = M no electre-
static mode harmonics are driven. The magnitude of 5, may be estimated as

t\)

-n =~ enR[(th)2/2XroM]b+1 J:’O.M(Xi‘{,M) {2

3

where wy is the trapping frequency, X, is the value of z for which J, ;,(z) reaches
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its first maximum, b == 1 for the linear spline and » = 2 for the quadratic spline.
This estimate, which is valid for wyz < 7 is derived in Appendix B.

Numerical simulations of cyclotron damping with linear and quadratic base func-
tions have been carried out to illustrate this effect. In these runs a whistler wave with
kc/w, = 1/v/3 was initialized in 2 Maxwellian plasma withsn = ¢/3,v,0= V2 s
(monoenergetic in the perpendicular direction) and w, = w,/2. The initial magnetic
energy isUy, = 4.9 X 10-3Uyot and the initial trapping frequency is wy =4.5 X 102w,
From ¢ = 0to # = 50w," the magnetic energy is observed to decay at the rate
(2y = 0.035w,,) predicted by linear theory. This aspect of the simulation will be
discussed in Section V and only the electrostatic energy, which would be zero in
this case for a continuous plasma is considered now. For J = M = 16 the electro-
static energy remains negligible. However, for J = 16, M = 12 the electrostatic
energy increases as shown in Fig. 7 and resides entirely in modes # = 4 and 8.
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Fic. 7. Excitation of electrostatic modes due to discrete loading of particles in perpendicular
velocity phase angles.

These results are in agreement with Eq. (21). Assuming a resonant particle density
ng = 0.05n, , estimates of the ratio of electrostatic energy at ¢ = 50w ' to total
energy, obtained from Eq. (22), are Ug/Uor =~ 1077 for the linear base function
and Ug/Uiot =~ 0.4 X 10~8 for the quadratic base function. These estimates agree
qualitatively with the values observed in Fig. 7.

5. EFFECT OF DISCRETE SPATIAL LOADING

The effect of regular loading of the particles at the grid points in the x direction
is considered now. Assume that a whistler wave with mode number # propagates
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through the plasma. As particles travel along this wave, their perpendicular
velocities acquire perturbations with a spatial dependence of the form

5, = &,0¢wine/L,

L

1

where the real part represents the y component of the velocity perturbation and the
imaginary part represents its z component. Suppose that at some time ¢ the particies
of a given beam o fall exactly at the grid points as shown in Fig. 8a. The transverse

S /’A\ EAN FaN
< N AN < S AN
’ X,
’ 20N \\ //’L ’/f\\ [\\
‘ u 3 N & 1 g Ay
i-1 i i+l i i 1t
N + Axw
20 AV,

(a) {p)

Fic. 8. Example illustrating the effect of discrete spatial loading of the particies.

current density at grid point j (for the linear spling) is due only to the particle at this
point. This current density is

J_Lj(f) — —enovLﬁez”i"f" e

At alater time 7 4+ 7,/2, where 7, = Ax/odv,, the particles will have drifted so that
they are located midway between grid peints as shown in Fig. 8. The current
density at grid point j is now the sum of contributions from two particles,

Tt + 7,02) = — (enyd of2) (e minATIL L gmindzLy g2ninils

= — enyT e cos(mnfT},

and is smaller than the current at time 7. Thus as particles drift across the grid
points the magnitude of the current fluctuates and these fluctuations drive new
waves with the same mode number # as the original wave but with frequencies
w, = 27[7, .

When all the beams (i.e., all values of o) are considered there results & phase
mixing so that the vector potential 8,7 due to this effect remains small, except at
times which are multiples of the “beat time” 75 = 4x/dv,. At these times the
contributions of all the beams are in phase and large deviations occur.

This effect may be analyzed by a perturbation method presented in Appendix C.
Consider the simulation of a whistler wave with mode number », amplitude 5,*,
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frequency w, and damping constant v, . The vector potential deviation due to
discrete spatial loading is given by

39 2 b
g - %Z% K, (3’) Y A4, cos(w,t -+ bnf2), 23)

where w, = 2modv,/dx,

n[(1 + i82,) e %" — 7] oot
A= ok )

2, = wy — w, — kodv,,

24)

b = 1 for the linear spline and b = 2 for the quadratic spline.
This effect is evident in the behavior of the magnetic energy for the cyclotron
damping simulation shown in Fig. 9, which corresponds to the run described at the
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Fic. 9. Deviation in magnetic energy from cyclotron damping due to discrete spatial loading
of the particle.

end of Section 4. In this case 4v,/c = 1/20 from which 75 = 13.6w}" and Eq. (23)
gives

AUMn __2 \B’ng\

= > ~ 0.16 (linear spline),
Unn | B |

~ 0.01 (quadratic spline).
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The deviations from cyclotron damping evident in Fig. 9 agree both in magnitude
and frequency of occurrence with the above results, and are smaller, by at least an
order of magnitude, for the quadratic spline than for the linear spline.

6. CONCLUSIONS

A study of discrete particle effects in whistler simulation has been made using
ajgorithms derived by the variational method of Ralph Lewis. This method providss
a systematic procedure whereby the proper charge sharing scheme for the particie
is derived in terms of the spline used in the interpolation of the potentials to yield
energy-conserving algorithms. This perfect energy conservation (in the limit
4z — 0) is unfortunately not accompanied by perfect momentum conservation and
such algorithms are not necessarily optimal. However, in the electrosiatic case,
energy-conserving algorithms of this type have been studied extensively {16, 17]
and found satisfactory in simulations of small-amplitude phenomena {181, Their
application to whistler simulation appears therefore as a natural extension of
these earlier studies.

Numerical effects due to the discrete initial loading of the particles in paraliel
velocities, perpendicular velocity phase angles and positions have been analysed in
Sections 3, 4 and 5 respectively. The results of numerical tests have been presented
to confirm the analytical results and the performance of two versions of the
algorithm based on linear and quadratic splines have been compared.

The effect of discrete loading in paraliel velocities, i.e., the finite velocity incre-
ment duv,, considered in Section 3, is the appearance of recurrence and of a
whistler-mode beaming instability. As in the electrostatic mode, the recurrence
time is 75, = 2n/kdv, and the growth rate of the instability scales approximately as
kAv,, where & is the mode number considered. Sufficiently synall values of 4, must
be used to keep this effect under control. Values of 4u, ranging from ¢/40 to ¢/20
with vgm/c = 1/3 have been used in a number of simulations without adverse =ffects
from recurrence or beaming instability. It should be noted that small values of
dv, not only lengthen the recurrence time and decrease the beaming instability
growth rate, but also reduce the saturation level of the instability. This cccurs when
adjacent beams merge due to either the whistler wave being studizsd or the beaming
instability itself.

The effect of discrete loading in perpendicular velocity phases, i.c., the finite
phase increment 48 was considered in Section IV. This effect causes density
fluctuations which drive electrostatic modes and may meodify the whistler m\rc
itself. The magnitude of these fluctuations is given by Eq. (22), where M = 2w/
is the number of phase values, and is significantly smaller for the quadratic s "puns
than for the linear spline. In the case of a nearly monochromatic whistler wave, 2
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value of M close to the number J of intervals Ax per whistler wavelength is optimal
since this effect vanishes for M = J. For distribution functions having a finite
energy spread in the perpendicular direction it is possible to stagger the angles 8, by
phase-shifting the particles by an angle 46/2 on alternate concentric circles, instead
of aligning them radially as shown in Fig. 2(b). This causes a partial phase mixing
of the density fluctuations thereby reducing their amplitude without disrupting
the quiet start.

The effect of spatial loading at discrete intervals Ax, discussed in Section 5, is the
appearance of fluctuations in the magnetic vector potential. These fluctuations are
described by Egs. (23) and (24) and, because of phase mixing between beams,
remain small except at time intervals 7, = dx/4v, for which the perturbations of
all beams are in phase. This effect may be controlled by choosing sufficiently small
values of dx and 4o, and is also significantly smaller for the quadratic spline than
for the linear spline. Typical values of 4x equal to +%th of the shortest wavelength
of interest, with dv, = ¢/40 to ¢/20 for vy = ¢/3 have been found satisfactory.

The results of Section 4 and 5 show that the quadratic spline is significantly
superior to the linear spline for the simulation of low-amplitude waves. These
results also suggest that higher-order splines, having Fourier coefficients @,
dropping more steeply as » increases may yield further improvement. This improve-
ment, however, would have to be weighted against the increased complexity of the
computations.

In the simulation of large-amplitude whistlers the discrete particle effects dis-
cussed in this paper become less important because the perturbations they generate
remain small compared to the whistler wave itself. The advantage of the quadratic
spline over the linear spline becomes less obvious in this case. This conclusion has
been confirmed in simulations similar to the example of Sections 4 and 5 but with
a larger amplitude giving a trapping frequency w; = 0.2w,, .

APPENDIX A: Finite DIFFERENCE EQUATIONS

The finite-difference equations are written in normalized form with time measured
in units of w3', position in units of the system’s length L and the potentials in units
of (mfe) L2w, 2. The system’s length L is related to the collisionless skin depth ¢/w,
by the dimensionless ratio &, = Lw,/c.

1. Linear Spline

Let j denote the closest grid point to the left of x; and let p; = (x; — jdx)/dx,
0 < p; < 1. Egs. (6), (8), (10a), and (13) take respectively the form

Avgsfdt = —J[oy — a4 + ka0ye(Buin — Bu) + karvei(Begin — Bl
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&y — 204+ g = "‘(Po + Pj)/f ?
Ay =1 — p) B + piﬁj—é—l s

AiBi—y + BB + CiBiy = Dy,
where

Ajzl‘_FP;‘~1s Cizl_FPi,:
B]:—z—Fp;/’ DjZ~FO'~,

and I" = k,2/J%(1 4 i8,). Each particle i, with j < x;/4x < j + 1, contributes the
following increments to the arrays p; , p;/, p; and oy,
Ap; = —Jd(l —p) Z;, Apjq = —JIpiZ;,
dp/ = —JIpl — p) Z;, dp] = ~J( — p)* Zs, Apfis = —IpjZ;
AG'J»: = ”‘—J(I — pi) hlZE 5 AUH—I = ~—Jp,-i'2%-Zi 3

where Z, represents the particle weight with the normalization ZL Z, =1

2. Quadratic Spline

The second derivative operator takes the form

S 1/Ax for ' —j=0

i * , , —1/34x for |i'—j|l=1

1 S | g — / | _,;l

X ¢'(x —jdx) ¢'(x —j'dx) dx lede  for 1 —71=2
0 for |Jj 2

A

Letj denote the grid point closest to x; and let p; = {x; — jdx)/dx, —4 <p; < %
Equations (6}, (8), (10a) and (13) become, respectively,

'C{L.'a:i , ,

P/l JG —p) g + 2py — G PD %
+ kepya{—G — P Buics — 20:Bus + G ) Byl
+ kel —G — P B — 0B + G+ p) Brpaly
g T 205y — 60y - 2otjug T gy = —6(pg -+ i}/,
Au=3G —pPBia+ G —0AB+ H+ 0B
AiBie + Bifia + Cifs + Difseq 4 Esfie = Fj
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where
Ay = —§pis, D; = —% + I'pj,
By = —} 4+ Ipi 4, E; = —% + Ipf,
C; =1+ Ip/, F,=—TIo;.

Each particle i, with j — § < x;/4x < j + 3, contributes the following increments
to the arrays p; , p;’, p}, p; and g;,

J \ J 2
APi—l = ) G—p)Z;, A‘Tz"l = D) G —p)hZ;,

dpj=—J (@ —pH Z;, do; = —J (& — PO hiZ;,
J i 2 J 1 2
dpjq = ) G-+p)Z, dojq = —5( + PP hZ;,

. I 4 ” S ags 2
Apj—lz_Z(i—pi) Z;, APj:_E(é Fp)R (G —pPdZs,
7 ” J 3

dpf = —J(} —pPfZ;, dpi = —z(% —pP @ —pHZs,
Ao’ J o1 4 Ap” J o 2
P = —‘Z(E +p)PZ;, pic = —Z(“ — PP Z;

APPENDIX B: ELECTROSTATIC MODES AMPLITUDES

Taking the discrete Fourier transform of Eq. (20) yields

- 1 -
pn = j; p,-'e‘*"““ M

= ;_"A% Z p(xior: — j'Ax) e=2mini’ /i, (B1)
3.3
Let
- | L o 1 1 sin(wn/J) 12+
— —~27wtnx /L _ YT
P =T f_,_/g Plx) e dx J[ p—— ]

denote the Fourier transform vector of the spline, where b = 1 for the linear spline
and b = 2 for the quadratic spline, then

PR — ' AX) =Y redrin @RI AL,

n’
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Substituting this expression and Eq. (19) into Eq. (B1) and carrying out the sum
over j' vields

_ enig
Bp ~= — /Mr

2 q—D—nJ—pJerﬂ(n phVw gt Lo—2wini /) eAp ;l {«7‘_ {
N

where z, = 2m(n — pJ) £x/L, and £ is the maximum displacement of resonant
electrons. The last exponential factor in Eq. {B2) is now expanded using the identity

explizsin§} = 3 J(z)e**

I

where J,{z) denotes the Bessel function of the first kind of integer order [19]. After
substituting this identity into Eq. (B2), the sum over p may be carried out to give

‘57? = —eng Z q]f_n+pje—2ni(7iv——pj;L‘Rt“'LJI‘AW(Z!)) e—2772'(?1+r.v‘.l)j/11
D1,

The sum over j vanishes, except for n + rA = ¢J, where g is an integer. Thus
7n 7 0 only for n = r\M —+ q,J where r, and g, are integers and Eq. (21} fellows.
An estimate of p, may be obtained by retaining only the largest term in the
sums over p and ¢ in Eq. (21). This term corresponds fo i = ry, i.e., to the iowest-
order Bessel function, and to a value of z, corresponding to the first maximurg,
Xr M of the Bessel function J. M - The maximum displacement of resonant
electrons is given by &, ~ L(wa)2/4w for wyt S w where wy, is the trapping

itﬁﬂllﬂ]lﬁy Thus the larsest term in the sum over » corresnnnds to

—n + pJ =~ 2y, wf{wrt)

Retaining only these values of r and —n + pJin Eq. (21) yields Eq. (22)

APPENDIX C: DrerivaTioNn OF EQs. (23) axD (24)

Consider a particle initially loaded at j4x, with paraliel velocity odv, and per-
pendicular velocity phase angle p48. A monoenergetic velocity distribution in the
perpendicular direction is assumed with perpendicular velocity v, . The position
and velocities of this particle at time ¢ are given by

xiow = jAx - odv,t + E7, €h
vow = gdy, + giou, (€2

UT” —_ vloeﬁu.ﬁﬁ-l—wci) + Y,)jgu‘ {CS‘;
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where &°u(¢) denotes the displacement of the particle due to interaction with the
whistler wave and »’“(¢) denotes its perpendicular velocity perturbation. Complex
notations are used to denote v/ and »’°* with the real and imaginary parts along
the y and z directions, respectively.

The parallel component of the Lorentz force yields

04,
Jou — . 2710
g me [8,

(C4)

] 2=] Ao dvgt

where A(x, t) is defined in Eq. (4). Introducing the Fourier transform &, of the
spline defined in Appendix B yields

04
ox

i 5 o .
— g__l E nJ¢ane2mm/Jeﬂmnadvxt/L
Jdxtodv,t L n

where

B‘ﬂ — _1_2 ﬁje——zﬂnj/J
J j

is the discrete Fourier transform of B; . Substituting this expression into Eq. (C4)
and taking the Laplace transform defined by

de) = [ g(0) et dr

0
gives

ev,,
me Lw?

2
giau —

Z an—)ne%rinj M givudd
n

v=x+1
X [y + no + v00) + VBia(e@ + wy + ve0,)] (C3)

where w,, = 2mnedv,/L.
The perpendicular canonical momentum equation yields

d ( jou
PRy
dt ( me iat)

and after transformations this equation gives

fion = 2 Y TG B (0 + wpy)- (C6)

mcw—)—wc p"
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The perpendicular current density at grid point j" is given by

en ; okt 4
Jy=— #jﬁo Y nu (X — j'dx)

j.o.u

where n, = fy(oduv,) dv, is the relative particle density of beam ¢. This expressicn
is manipulated by taking the Fourier transform with respect to j', substituting
Egs. {(C1) and (C3), linearizing with respect to the small guantities &% and v
and taking the Laplace transform with respect to ¢. These operations yisld

Ly en _ o , \
Jnlw) = — ”ﬁo z N @ _ntps [77’ o -+ W)
3201, D
27i(—n J o
4+ __77_(______‘"_!)_). IJ_LOEL“ABS"U”(QJ - W ponile - wc}]

L i
Substituting Egs. (C5) and (C6) and carrying out the sums over jand p gives

@ T Wi nyplle

2 w. 2 5 — _
Jow) = ET‘D— Z oS8 s piFrgs [

Copa W T W pepi)e T We
| Ar(—n A pJ)n + qJ) v, 1 ?
I L? 2 {w+ @papne T we)?
X Bul@ + @pigs0)- {7

The term corresponding to p = ¢ = 0 in Eq. (C7) is the current density
associated with the whistler wave. The other terms are perturbations due 16 the
discrete nature of the field representation and of the initial particle loading. Let the

sum of these terms be denoted as J,7. The deviation in the vector potential due to
discrete spatial effects, denoted as 3,7, is obtained by evaluating the response of the
plasma to the perturbation current J,9,

T <

T F o). ) ©8)

:éng =
where k& = 2mn/L and the dielectric function D(k, w) may be written as
Dk, w) =1 4 (0 2/i2cH)w/{w + wy)]

Consider now the simulation of a whistler wave with a vector potential of the
form A(x, 1) = f8,,* exp[-i(kx — w,t)] for which B, = if,*/(w + w,) for n = ~kLj2=
and B, = 0 for n % —kL/2m. The dispersion function becomes

D = wyw + wg)f/[wdw + wel].
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Substituting the proper terms from Eq. (C7) into Eq. (C8) and retaining only the
second term in bracket in Eq. (C7) which is dominant yields

éng _ 4772 wrz UZLO wl)(w + wc)
Br LXK 2 ww+ wp)
‘)E-—n+pﬂ)zn+qﬂ76 1
X c9
; (@ 4 OCnipne T @) (0 + @191 T @) (9
20 Or
q#0

where i, = Jn@, . Taking the inverse Laplace transform of Eq. (C9) gives discrete
effect contributions from the single pole at w = — wy— w(p1q)4, and the double-pole

at

W= —W,—W(nipns - Considering only the largest terms in the sum which

correspond to ¢ = 0 and p = 41 yields Egs. (23) and (24).
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